ibd file:
external binary uri
ibd checksum
ibd MD5
ibd SHA-1
ibd binary type:
continuous
preprocessed
ibd identification

Way of saving spectra in a imzML binary data file (ibd). The m / z values for all spectra are saved at the beginning of the ibd file. Then the spectral values follow.

Way of saving spectra in a imzML binary data file (ibd). Every spectrum is saved with it's own m / z and intensity values.
universally unique identifier is unique throughout the world and allows to doubtlessly identify the ibd file.
ibd offset handle
external array length
external data
external encoded length
external offset
image:
max count of pixels x
max count of pixels y
max dimension x
max dimension y
pixel size
image shape

spectrum position:

position $\mathrm{x} \quad$ Attribute to describe the position of a spectrum in the direction of the x -axis in the image.

Attribute to describe the position of a spectrum in the direction of the y-axis in the image.

Attribute to describe the position of a spectrum in the direction of the z-axis in the image.

sample stage:

position accuracy
step size
target material
linescan sequence:
bottom up
top down
left right
right left
no direction
scan pattern:
meandering
one way
random access
scan type
horizontal linescan
vertical linescan
linescan direction
linescan bottom up
linescan left right
linescan right left
linescan top down

Accuracy is the degree of conformity of a measured position to its actual value. This value describes how accurate the position of the sample stage can be determined.

Specify the range between two different measuring points on the sample.
Describes the material the target is made of.

The starting point is at the bottom of the sample and the sequence of the linescans is in up direction (parallel to the y-axis).

The starting point is at the top of the sample and the sequence of the linescans is in bottom direction (parallel to the y-axis).

The starting point is at the left of the sample and the sequence of the linescans is in right direction (parallel to the x-axis).

The starting point is at the right of the sample and the sequence of the linescans is in left direction. (parallel to the x -axis).

The linescans are performed randomly on the sample without any sequence.

The scanning happens in non-stop way. As soon as the end of the sample is reached, the scanning direction will be switched and the scanning is continued. There is no new positioning necessary."

The scanning always happens in the same direction. As soon as the end of the sample is reached, the stage is positioned at the starting edge to begin the next run.

The scanning points are randomly chosen and do not follow a pattern.

The scanning line is a horizontal one.
The scanning line is a vertical one.

The starting point is at the bottom of the sample and the scanning happens in up direction (parallel to the y-axis).

The starting point is at the left of the sample and the scanning happens in right direction (parallel to the x-axis).

The starting point is at the right of the sample and the scanning happens in left direction. (parallel to the x-axis).

The starting point is at the top of the sample and the scanning happens in bottom direction (parallel to the y-axis).

